Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521856

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto , Glaucoma de Ângulo Aberto , Glicoproteínas , Animais , Camundongos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular/genética , Lentivirus/genética , Malha Trabecular/metabolismo
2.
Methods Mol Biol ; 2708: 77-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558962

RESUMO

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Animais , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Pressão Intraocular , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo
3.
Adv Exp Med Biol ; 1415: 183-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440032

RESUMO

Inherited retinal diseases (IRDs) are an extremely diverse group of ocular disorders characterized by progressive loss of photoreceptors leading to blindness. So far, pathogenic variants in over 300 genes are reported to structurally and functionally affect the retina resulting in visual impairment. Around 15% of all IRD mutations are known to affect an essential regulatory mechanism, pre-mRNA splicing, which contributes to the transcriptomic diversity. These variants disrupt potential donor and acceptor splice sites as well as other crucial cis-acting elements resulting in aberrant splicing. One group of these elements, the exonic splicing enhancers (ESEs), are involved in promoting exon definition and are likely to harbor "hidden" mutations since sequence-analyzing pipelines cannot identify them efficiently. The main focus of this review is to discuss the molecular mechanisms behind various exonic variants affecting splice sites and ESEs that lead to impaired splicing which in turn result in an IRD pathology.


Assuntos
Splicing de RNA , Doenças Retinianas , Humanos , Splicing de RNA/genética , Mutação , Éxons/genética , Doenças Retinianas/genética , Retina , Processamento Alternativo
4.
FEBS J ; 290(22): 5248-5269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36877952

RESUMO

Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Genômica , Genoma
5.
Transl Vis Sci Technol ; 12(2): 27, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795063

RESUMO

Conclusions: Our analysis estimates BCD prevalence and revealed large differences among various populations. Moreover, it highlights advantages and limitations of the gnomAD database. Methods: CYP4V2 gnomAD data and reported mutations were used to calculate carrier frequency of each variant. An evolutionary-based sliding window analysis was used to detect conserved protein regions. Potential exonic splicing enhancers (ESEs) were identified using ESEfinder. Purpose: Bietti crystalline dystrophy (BCD) is a rare monogenic autosomal recessive (AR) chorioretinal degenerative disease caused by biallelic mutations in CYP4V2. The aim of the current study was to perform an in-depth calculation of worldwide carrier frequency and genetic prevalence of BCD using gnomAD data and comprehensive literature CYP4V2 analysis. Results: We identified 1171 CYP4V2 variants, 156 of which were considered pathogenic, including 108 reported in patients with BCD. Carrier frequency and genetic prevalence calculations confirmed that BCD is more common in the East Asian population, with ∼19 million healthy carriers and 52,000 individuals who carry biallelic CYP4V2 mutations and are expected to be affected. Additionally, we generated BCD prevalence estimates of other populations, including African, European, Finnish, Latino, and South Asian. Worldwide, the estimated overall carrier frequency of CYP4V2 mutation is 1:210, and therefore, ∼37 million individuals are expected to be healthy carriers of a CYP4V2 mutation. The estimated genetic prevalence of BCD is about 1:116,000, and we predict that ∼67,000 individuals are affected with BCD worldwide. Translational Relevance: This analysis is likely to have important implications for genetic counseling in each studied population and for developing clinical trials for potential BCD treatments.


Assuntos
Distrofias Hereditárias da Córnea , Família 4 do Citocromo P450 , Doenças Retinianas , Humanos , Família 4 do Citocromo P450/genética , Análise Mutacional de DNA , Linhagem , Prevalência , Distrofias Hereditárias da Córnea/genética , Doenças Retinianas/genética
6.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196579

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.

7.
Prog Retin Eye Res ; 89: 101029, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34839010

RESUMO

Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.


Assuntos
Doenças Retinianas , Distrofias Retinianas , Estudos de Associação Genética , Humanos , Mutação , Linhagem , Retina , Doenças Retinianas/genética , Doenças Retinianas/terapia , Distrofias Retinianas/genética
8.
Exp Cell Res ; 405(2): 112709, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174318

RESUMO

We earlier identified native human trabecular meshwork stem cells (TMSCs) based on two-parameters- high ABCG2 expression and high nucleus to cytoplasmic ratio. The TMSCs also expressed p75 and AnkyrinG. Based on the high expression of ABCG2 and p75, the TMSCs were identified to be located in the Schwalbe's line region of the TM. In continuation, the current study aimed at elucidating the functional characteristics of human TMSCs. Upon culturing, only a small proportion of TM cells (0.96 ± 0.21% in <30 years) expressing stem cell markers ABCG2 and p75 adhered to the culture dish. This proportion significantly reduced with ageing (0.32 ± 0.23% in 30-60 years and 0.35 ± 0.04% in >60 years). Characterization of the primary TM cultures identified 7.00 ± 1.80% of stem cells with label retaining property. Further, cultured cells had the ability to form TM spheres (0.82 ± 0.23%) which consisted of high ABCG2 and p75 positive cells. Upon dexamethasone induction, 86.00 ± 14.87% and 64.60 ± 7.24% of the cells derived from the TM spheres expressed myocilin and exhibited cross linked actin networks respectively, indicating differentiation of the TMSCs in the sphere to TM cells. In addition, the sphere derived TM cells also possessed phagocytic potential (13.28 ± 3.30%) equivalent to primary TM cells (16.33 ± 4.04%) which was evident upon internalization of zymosan particles. In conclusion, this study has established that a proportion of cultured TM cells had the label retaining property as well as sphere forming ability of adult stem cells. Thus, these results confirm the presence of adult stem cells in the human TM that might be responsible for the maintenance of tissue homeostasis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Células-Tronco/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Adulto , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Homeostase/fisiologia , Humanos , Fagócitos/citologia , Fagócitos/efeitos dos fármacos , Células-Tronco/citologia , Malha Trabecular/metabolismo
9.
Sci Rep ; 11(1): 24518, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972817

RESUMO

We previously identified and characterized human trabecular meshwork stem cells (TMSCs) based on high expression of ABCG2/p75 positivity and high nucleus to cytoplasmic ratio. These TMSCs expressing high ABCG2 and p75 were located to the insert region of the human TM. Additionally, we demonstrated an age-related reduction in the TMSC content which was significantly associated with TM cell loss. In continuation, this study was aimed to determine the TMSC content in glaucomatous donor eyes wherein a drastic reduction in TM cellularity has already been reported. Anterior segments from known glaucomatous (n = 6) and age-matched normal (n = 8) donors were dissected into four quadrants. A minimum of three sections from each quadrant were used for histopathological analysis as well as immunostaining. Analysis of hematoxylin and eosin-stained sections from glaucomatous tissues revealed a decrease in total TM cellularity, thickening of trabecular beams, fusion of trabeculae, absence of patent Schlemm's canal compared to age-matched controls. In addition, the TM thickness at various positions of the meshwork and the coronal as well as the meridional diameters of the Schlemm's canal were observed to be significantly reduced in glaucomatous eyes. Further, sections from both the groups were immunostained for universal stem cell marker ABCG2 and neural crest derived stem cell marker p75. The images were acquired using Leica SP8 confocal microscope. Quantification of total TM cellularity based on nuclear counterstain (mean ± SD) using ImageJ identified 69.33 ± 12.77 cells/section in control eyes. In glaucomatous donors, the TM cellularity was found to be reduced significantly to 41.83 ± 9.0 (p = 0.0007). In addition, a reduction in the percentage of TMSCs (cells with high ABCG2 expression and p75 positivity) was evident in glaucomatous donors (0.14 ± 0.17%) compared to age-matched controls (4.73 ± 5.46%) (p = 0.064). Thus, the present study confirmed the significant decline in TM cellularity and a reducing trend in the TMSC content, though this reduction was non-significant in glaucomatous donor eyes. Further studies are essential to elucidate the role of TMSCs in the pathogenesis of primary open angle glaucoma.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Células-Tronco/citologia , Doadores de Tecidos , Malha Trabecular/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Contagem de Células , Feminino , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Células-Tronco/metabolismo , Malha Trabecular/metabolismo
10.
Eye Vis (Lond) ; 6: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31641682

RESUMO

BACKGROUND: Loss of cells in the human trabecular meshwork (TM) has been reported with ageing and in glaucoma. This study aims to identify, quantify and determine the age-related changes of human TM stem cells (TMSCs). METHODS: Isolation of TM cells/ paraffin sectioning was carried out using human corneoscleral rings and whole globes. The TM cells/ sections were immunostained for the stem cell markers ATP-binding cassette protein G2 (ABCG2), nerve growth factor receptor p75 and AnkyrinG (AnkG). Images were acquired using Leica SP8 confocal microscope. The isolated cells were analyzed for two parameters- ABCG2 expression and nucleus to cytoplasmic ratio (N/C ratio). The total number of TM cells and those positive for ABCG2 and p75 in each section were quantified. Spearman rank order correlation was used to determine the association between age and the cell counts. RESULTS: The TMSCs were identified based on two parameters- high ABCG2 expression and high N/C ratio > 0.7. These stem cells were also positive for p75 and AnkG. The TMSC content based on the two parameters was 21.0 ± 1.4% in < 30 years age group, 12.6 ± 6.6% in 30-60 years and 4.0 ± 3.5% in > 60 years. The stem cells with high ABCG2 and p75 expression were restricted to the Schwalbe's line region of the TM. A significant correlation was observed between the reduction in TMSC content and TM cell count during ageing. CONCLUSION: The human TMSCs were identified and quantified based on two parameter analysis. This study established a significant association between age-related reduction in TMSC content and TM cell loss.

11.
Indian J Ophthalmol ; 67(10): 1579-1584, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31546484

RESUMO

Purpose: To compare the structural integrity and functional status of the donor corneas stored in Cornisol and Optisol-GS. Methods: Fifteen optical grade corneal donor buttons (6 pairs; 3 individual) obtained from Rotary Aravind International Eye Bank were used for the study. The left eye of the paired sample was preserved in Cornisol and the right in Optisol-GS. The three individual buttons were used for the baseline data. The corneas were assessed with slit lamp and specular microscope before and after storage time (7, 10, or 14 days). They were then immunostained for markers of structural integrity (ZO-1, Phalloidin) and functionality (Na+/K+ ATPase). The images were acquired using confocal microscope and analyzed using ImageJ software. Results: There was no difference in the clinical evaluation of the corneal layers between the two media. No marked variation was observed in the immunostaining data with reference to the storage period. Intact cellular integrity was identified in 91% (51%, 98%) [Median (min, max)] of cells in Cornisol and 94% (38%, 98%) cells in Optisol based on ZO-1 staining, comparable to the baseline data [87% (76%, 97%)]. Stress fibers were detected in 42.5% (1%, 88%) cells in Cornisol stored corneas and in 55% (11%, 94%) in Optisol when stained for actin cytoskeleton, which correlated with the presence of epithelial defect before storage and vacuolated endothelial cells after storage. No difference was observed between the two media based on the staining pattern for Na+/K+ ATPase. Conclusion: Cornisol and Optisol-GS are equivalent in maintaining the structural integrity and functionality of the donor corneas.


Assuntos
Sulfatos de Condroitina/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Dextranos/farmacologia , Endotélio Corneano/citologia , Gentamicinas/farmacologia , Soluções para Preservação de Órgãos/farmacologia , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Misturas Complexas/farmacologia , Córnea/efeitos dos fármacos , Endotélio Corneano/metabolismo , Humanos , Microscopia Confocal , Pessoa de Meia-Idade , Preservação de Órgãos/métodos , Microscopia com Lâmpada de Fenda , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Doadores de Tecidos , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...